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Nonlinear stochastic di¤erential equations in Banach spaces

Let H be a real Hilbert separable space with H 0 the dual and V a re�exive
Banach space such that

V � H = H 0 � V 0

with dense and compact injections, and V 0 hz , viV = hz , viH for all z 2 H
and v 2 V .
Let the stochastic di¤erential equation in H of the type

dX (t) = A (t,X (t)) dt + B (t,X (t)) dW (t) (1)

where W (t) , with t 2 [0,T ] is a Q Wiener process with Q = I on
another Hilbert space (U, h, iU ) and for T 2 [0,∞[ �xed

B : [0,T ]� V ! L2 (U,H) ,

A : [0,T ]� V ! V 0

progressively measurable.
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De�nition. An (Ft )� adapted stochastic process (X (t))t2[0,T ], H -
valued continuous, is called solution for the equation (1) if for the
equivalence class X̂ with respect to dt 
P we have

X̂ 2 Lp ([0,T ]�Ω, dt 
P;V ) \ L2 ([0,T ]�Ω, dt 
P;H)

with p from the coercivity and we have

X (t) = X (0) +
Z t

0
A (s, X̄ (s)) ds +

Z t

0
B (s, X̄ (s)) dW (s)

P�a.s. where X̄ is a dt 
P� version of X̂ , progressively measurable and
V� valued.
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Convergence of solutions for nonlinear stochastic
di¤erential equation in variational formulation

Consider the stochastic basis
�
Ω,F , fFtgt�0 ,P

�
and a H - valued

cylindrical Wiener process W .
Let the stochastic di¤erential equation�

dX (t) + A (X (t)) dt =
p
QdW (t)

X (0) = x

where the operator Q 2 L (H) is symmetric, nonnegative, of trace class
and such that Ker Q = f0g.
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Assume that the nonlinear operator A : V ! V 0 satisfy the conditions
below

(i) (Hemicontinuity) For all u, v , x 2 V the map
θ 7!V 0 hA (u + θv) , xiV is continue from R to R.

(ii) (Monotonicity) We have

V 0 hA (u)� A (v) , u � viV � 0,

for all u, v 2 V .
(iii) (Coercivity) There exist γ > 0, η � 0 and p > 2 such that

V 0 hA (u) , uiV � γ kukpV � η juj2H , for all u 2 V .
If p = 2 then there exists γ > 0 such that

V 0 hA (u) , uiV � γ kuk2V , for all u 2 V .

(iv) (Boundedness) There exist β1 > 0, β2 2 R such that

jA (u)jV 0 � β1 kukV + β2, for all u 2 V .
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(v) A = rΦ where Φ : V ! R is convex and Gateaux di¤erentiable with
Φ � 0 on V and Φ (0) = 0.

(vi) The operator A is di¤erentiable from V to V 0 and

TrH
�
QA0 (x)

�
=

∞

∑
i=1

�
Qei ,A0 (x) ei

�
� C

�
kxkp�2V + 1

�
,

where feig � V is a complete orthonormal system in H such that
A0 (x) ei 2 H for all i 2 N, x 2 V and A0 is the Frechet di¤erential of
A.
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We consider the nonlinear operators A : V ! V 0 and Aα : V ! V 0 that
satisfy the conditions above with all constants independents of α and we
de�ne the operators

AH (y) = A (y) , y 2 D (AH ) , D (AH ) = fy 2 V : A (y) 2 Hg

Aα
H (y) = A

α (y) , y 2 D (Aα
H ) , D (A

α
H ) = fy 2 V : Aα (y) 2 Hg ,

and equations8<:
dX α (t) + Aα

H (X
α (t)) dt =

p
QdW (t) , t � 0

X α (t) = 0, on ∂O t � 0,
X α (0) = x

(2)

and 8<:
dX (t) + AH (X (t)) dt =

p
QdW (t) , t � 0

X (t) = 0, on ∂O t � 0,
X (0) = x .

(3)
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Theorem. Let A and Aα satisfying Hypotheses above with γ, η, β1, β2
and C independent of α. Assume also that, for all y 2 H and all ε > 0
�xed, we have

(1+ εAα
H )
�1 y ! (1+ εAH )

�1 y , strongly in H, for α ! 0. (4)

Then the following convergence holds

E jX α (t, x)� X (t, x)j2H ! 0, for all x 2 V

uniformly in t on compact subsets of [0,∞) , as α ! 0.
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Proof (sketch)
Consider the following approximating equations�

dX α
ε (t, x) + A

α
ε (X

α
ε (t, x)) dt + εX α

ε (t, x) dt =
p
QdW (t) ,

X α (0, x) = x

and �
dXε (t, x) + Aε (Xε (t, x)) dt + εXε (t, x) dt =

p
QdW (t) ,

X (0, x) = x .

where Aα
ε and Aε are the Yosida approximations of the operators Aα

H and
resp. AH .
We have

E jX � X αj2H � c
�

E jX � Xεj2H +E jXε � X α
ε j2H +E jX α

ε � X αj2H
�
.
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By the Ito formula with ϕ = j.j2H

E jX α
ε (t, x)j

2
H + 2γE

Z t

0

(1+ εAα
H )
�1 (X α

ε (s, x))
2
V
ds

� ct
�
jx j2H + TrQ

�
, t � 0.

Applying again the Ito formula with ϕ = Φα
ε where

Φα
ε (y) = inf

z2V

(
jy � z j2H
2ε

+Φα (z)

)
y 2 H

and Aα
ε = rΦα

ε we obtain

E [Φα
ε (X

α
ε (t, x))] +E

Z t

0
jAα

ε (X
α
ε (s, x))j

2
H ds

� Φα
ε (x) + cE

Z t

0

�(1+ εAα
H )
�1 (X α

ε (s, x))
p
V
+ 1
�
ds

(Institute) 27 08 2010 1 / 1



On the other hand we have

E jX α
ε (t, x)� X α

λ (t, x)j
2
H

� E

Z t

0

�
ε jAα

ε (X
α
ε (s, x))j

2
H + λ jAα

λ (X
α
λ (s, x))j

2
H

�
ds

+E

Z t

0

�
ε jX α

ε (t, x)j
2
H + λ jX α

λ (t, x)j
2
H

�
ds � C̄t (ε+ λ)

and consequently

E jX α
ε (t, x)� X α (t, x)j2H ! 0

for ε ! 0, uniformly in t on compact sets of [0,∞) as α ! 0.
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For each ε > 0, �xed, we have

E jX α
ε (t, x)� Xε (t, x)j2H ! 0

for α ! 0, uniformly in t on compact sets of [0,∞) .
By the Ito formula and using the monotonicity of Aα

ε we get that

E jX α
ε (t, x)� Xε (t, x)j2H + εE

Z t

0
jX α

ε (s, x)� Xε (s, x)j2H ds

�
����EZ t

0
hAα

ε (Xε (s, x))� Aε (Xε (s, x)) ,X α
ε (s, x)� Xε (s, x)iH ds

���� .
We have

E

Z t

0
jhAα

ε (Xε (s, x))� Aε (Xε (s, x)) ,X α
ε (s, x)� Xε (s, x)iH j ds

�
�

E

Z t

0
jAα

ε (Xε (s, x))� Aε (Xε (s, x))j2H ds
�1/2

�
�

E

Z t

0
jX α

ε (s, x)� Xε (s, x)j2H ds
�1/2

.
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Now, it su¢ ces to show that�
E

Z t

0
jAα

ε (Xε (s, x))� Aε (Xε (s, x))j2H ds
�1/2

! 0,

for α ! 0, with ε �xed.
From (4) it follows that

jAα
ε (Xε)� Aε (Xε)j2H =

1
ε2

���(1+ εAα
H )
�1 Xε ! (1+ εAH )

�1 Xε

���2
H
! 0

for α ! 0, for ε �xed and a.e. [0, t)�Ω.
On the other hand we have

jAα
ε (Xε)� Aε (Xε)j2H � C jXεj2H ,

a.e. in [0, t)�Ω, with C independent of α, t, x .
Now, via the Lebesgue dominated convergence theorem we can conclude
the proof.
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The convergence of the invariant measures

In this section we shall assume, in addition to Hypotheses 0.1, that there
exists a real nonnegative continuous increasing function Ψ such that

the initial value problem

z 0 (r) = �2Ψ (z (r)) , z (0) = z0,

has a unique solution z (., z0) on [0,+∞). Moreover, c (t) =
sup
z0�0

z (t, z0) < +∞ for all t > 0 and lim
t!∞

c (t) = 0.

we assume that

(A (x)� A (y) , x � y) � Ψ
�
jx � y j2H

�
, x , y 2 V .
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For the solution X of equation above, we consider the transition semigroup

Ptϕ (x) = E [ϕ (X (t, x))] , x 2 H, t � 0,

for all ϕ 2 Cb (H) (where Cb (H) is the space of all continuous and
bounded functions on H).
Under our assumptions, Pt has an unique invariant measure µ, i.e. a Borel
probability measure on H such thatZ

H
Ptϕ (x) µ (dx) =

Z
H

ϕ (x) µ (dx)

for all ϕ 2 Cb (H) , t > 0. We know also that µ is ergotic and strongly
mixing.
We denote by Λ the set of all invariant measures of Pα

t .
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Theorem. Let A and Aα satisfying Hypotheses above with γ, η, β1, β2
and C independent of α.
Then the set Λ is tight and then weakly compact.
If we assume also that, for all y 2 H and all ε > 0 �xed, we have

(1+ εAα
H )
�1 y ! (1+ εAH )

�1 y , strongly in H, for α ! 0,

then fµαgα is weakly convergent on a subsequence to µ, the invariant
measure of Pt .
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Proof (sketch)
The main part of the proof is to show that the family of probability
measures Λis tight, i.e. for all ε > 0 there exists Kε � H, compact, such
that µ (K cε ) � ε, 8µ 2 Λ.
To this propose we apply the Itô formula for

ϕ (x) = ϕδ (x) =
jx j2H

1+ δ jx j2H
, δ > 0.

We get

E

 
jX α (t, x)j2H

1+ δ jX α (t, x)j2H

!
+ 2γE

0B@Z t

0

kX α (s, x)kpV�
1+ δ jX α (s, x)j2H

�2 ds
1CA

� jx j2H
1+ δ jx j2H

+ ηE

0B@Z t

0

jX α (s, x)j2H�
1+ δ jX α (s, x)j2H

�2 ds
1CA+ tTrQ.
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For each α we integrate with respect to an arbitrary invariant measure µα

on H and by the invariance property, i.e.Z
H
Pα
t ϕδ (x) µα (dx) =

Z
H

ϕδ (x) µα (dx)

and letting δ ! 0 we get that

2γ
Z
H
kxkpV µα (dx) � η

Z
H
jx j2H µα (dx) + TrQ

and consequently thatZ
H
kxkpV µα (dx) � ηθ2

2γ
+
1
2γ

�
αkp

θp�2
+ 1
�
TrQ,

for θ > 0 su¢ ciently large.
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We de�ne
Bθ = fx 2 V jkxkV � θ g

which is compact in H since V � H compactly.Since

µα (Bcθ ) =
Z
B cθ

µα (dx) � 1
θp

Z
H
kxkpV µα (dx)

� 1
θp

 
η2θ2

2γ
+
1
2γ

�
αkp

1

θp�2
+ 1
�
TrQ

!
� 1

θp�2
c

where c is independent of α. It follows that Λ is tight and, by Prokhorov�s
theorem, we get that the set of probability measures Λ is relatively
compact (see [4]). Consequently, all sequence from Λ contains a
subsequence weakly convergent.
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In order to conclude the proof we have to show that, fµαgα is weakly
convergent as α ! 0, on a subsequence, to the invariant measure of the
transition semigroup Pt .
From the Krylov - Bogoliubov theorem, we have for each αk and for
fTng " +∞ thatZ

H
ϕ (x) µαk (dx) = lim

n!∞

1
Tn

Z Tn

0
Pαk
t ϕ (x) dt

= lim
n!∞

1
Tn

Z Tn

0
(Pαk
t ϕ (x)� Ptϕ (x)) dt

+ lim
n!∞

1
Tn

Z Tn

0
Ptϕ (x) dt

= δαk +
Z
H

ϕ (x) µ(dx).

Letting k ! ∞ we get that
R
H ϕ (x) µ(dx) =

R
H ϕ (x) µ(dx) for all

ϕ 2 Cb (H) . Then µ = µ where µ is the unique invariant measure
corresponding to the transition semigroup Pt .
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Homogenization

We shall present now an homogenization results for the equation8<: dX α (t)� div a
�

ξ

α
,rX α

�
dt =

p
QdW (t) , on O

X α (0) = x , on ∂O
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Let O be a bounded open subset of Rd and Y = [0, s ]d such that
Y � O. Consider the following assumptions
(h1) The function j : Rd �Rd ! R+, (ξ, z) 7! j (ξ, z) is Y - periodic in

ξ, convex and twice continuous di¤erentiable with respect to z and
there exist 0 < Λ1 � Λ2 < ∞ , independent of ξ, such that

Λ1 jz j2 � j (ξ, z) � Λ2

�
jz j2 + 1

�
,

for. ξ 2 Rd a.e. for all z 2 Rd .

(h2) Let a : Rd �Rd ! Rd , a (ξ, z) = rz j (ξ, z) satisfying a (ξ, 0) = 0
for all ξ 2 Rd and

ha (ξ, z1)� a (ξ, z2) , z1 � z2i � Λ1 jz1 � z2j2 ,
ja (ξ, z1)� a (ξ, z2)j � Λ2 jz1 � z2j , 8 z1, z2 2 Rd .
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(h3) Denote by ai ,j (ξ, z) =
∂

∂zj
ai (ξ, z) . Then there exist C1, C2 > 0,

independent of ξ and z , such that

C1 jx j2 �
d

∑
i ,j=1

aij (ξ, z) xixj � C2 jx j2 , for all x 2 Rd .

(h4) Consider Q for equation (1) of the form Q = B�σ, σ > 2+ n
2 ,

where �
By = �∆y , y 2 D (B) ,
D (B) = H10 (O) \H2 (O) .
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Step I
For each α > 0 we de�ne

aα : Rd �Rd ! Rd , aα (ξ, z)i = a
�

ξ

α
, z
�
i
,

for all z 2 Rd and a.e. ξ 2 Rd , i = 1, d .
Consider the operator Aα : H10 (O)! H�1 (O) de�ned by

(Aα (u) , v) =
Z
O
haα (ξ,ru (ξ)) ,rv (ξ)iRn dξ,

for all u, v 2 H10 (O) and Φα : H10 (O)! R+ such that Aα = rΦα, i.e.,

Φα (u) =
Z
O
jα (ξ,ru (ξ)) dξ, for all u 2 H10 (O) ,

where aα (ξ, z) = rz jα (ξ, z) .
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We observe that Aα
H satis�es the assumptions of the Trotter type result for

H10 (O) � L2 (O) � H�1 (O) and p = 2.
Consider the stochastic di¤erential equation8<:

dX α (t) + Aα
H (X

α (t)) dt =
p
QdW (t) , t � 0,

X α (t) = 0, on ∂O t � 0,
X α (0) = x .

(5)

Consequently equation (5) has a unique solution

X α 2 L2W
�
Ω;C

�
[0,T ] ; L2 (O)

�
\ L2

�
0,T ;H10 (O)

��
.
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Step II
We de�ne

ahom (z) =
Z
Y
a (ξ, z + gradwz (ξ)) dξ

for all z 2 Rd and wz 2 H1 (Y ) , Y - periodic and satisfying

�div a (ξ,gradwz (ξ) + z) = 0 on Y .

We have the operator Ahom : H10 (O)! H�1 (O)�
Ahom (u) , v

�
=
Z
O

D
ahom (ru (ξ)) ,rv (ξ)

E
Rn
dξ,

for all u, v 2 H10 (O) and Φhom : H10 (O)! R+

Φhom (u) =
Z
O
jhom (ξ,ru (ξ)) dξ, for all u 2 H10 (O) .
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Consider the equation8<:
dX hom (t) + AhomH

�
X hom (t)

�
dt =

p
QdW (t)

X hom (t) = 0, on ∂O t � 0,
X hom (0) = x .

(6)

The hypotheses from the Trotter result are satis�ed for
H10 (O) � L2 (O) � H�1 (O) and p = 2, and consequently, equation
above has a unique solution

X hom 2 L2W
�
Ω;C

�
[0,T ] ; L2 (O)

�
\ L2

�
0,T ;H10 (O)

��
.
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Theorem. Assume that hypotheses (hi ) , i = 1, 3, and de�ne Aα
H and

AhomH as above. Then solution X α to equation (5) is convergent to X hom,
the solution of equation (6) as follows

E

���X α (t, x)� X hom (t, x)
���2
L2(O)

! 0,

uniformly in t on compact sets of [0,∞) , as α ! 0.
The sequence of invariant measures fµαgα corresponding to equations (5)
is weakly convergent on a subsequence to the invariant measure µhom

corresponding to equation (6).
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Proof (sketch)
From [[1], Theorem 1.2 from Chapter 3] we have for all x 2 H10 (O) and
all ε > 0 that

(I + εrΦα)�1 x !
�
I + εrΦhom

��1
x , strongly in L2 (O) ,

i.e.

(I + εAα)�1 x !
�
I + εAhom

��1
x , strongly in L2 (O) .

Using the Trotter type theorem we get that

E

���X α (t, x)� X hom (t, x)
���2
L2(O)

! 0,

uniformly in t on compact sets of [0,∞) , as α ! 0.We can now apply the
�rst part and get that

µα * µhom

weakly on a subsequence, as α ! 0.
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